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I. INTRODUCTION 

The primary purpose of this paper is twofold: first, to derive an approximate expression for the 
bandwidth of a tuned antenna in terms of its input impedance that holds at every frequency, 
that is, throughout the entire antiresonant as well as resonant frequency ranges of the antenna; 
and second, to relate this expression for bandwidth to the antenna quahty factor Q. The defi- 
nition of stored energy that we use to define the Q of an antenna is similar to that of previous 
authors [l]-[7]. However, the approximate expression for the bandwidth and its relationship to 
Q are both more generally applicable and more accurate than previous formulas. The validity 
and accuracy of the expressions are confirmed by the numerical solutions to straight-wire and 
wire-loop, lossy and lossless tuned antennas over a wide enough range of frequencies to cover 
several resonant and antiresonant frequency bands. 

It is shown that the matched VSWR bandwidth is the more fundamental measure of bandwidth 
than conductance bandwidth because it exists in general for all frequencies at which an antenna 
is tuned. We also find that the Foster reactance theorem does not hold at all firequencies for 
antennas (whether or not the antenna is lossless) [8, sec. 8-4]. Although the general formula we 
derive for the bandwidth of an antenna involves the frequency derivative of resistance as well as 
the frequency derivative of reactance, quite remarkably, the half-power matched VSWR band- 
width of a general tuned lossy or lossless antenna is proven to approximately equal 2/Q for all 
frequencies if Q >,4. 

II. PRELIMINARY DEFINITIONS 
Consider a general transmitting antenna composed of linear electromagnetic materials and fed 
by a "feed line" that carries just one propagating mode at the time-harmonic (e^'"*) frequency 
w > 0. The propagating mode in the feed line can be characterized at a reference plane SQ 

(which separates the antenna from its shielded power supply) by a complex voltage and current. 
Let the antenna be tuned at a frequency WQ with a series reactance Xs(w) comprised of either 
a series inductance Lg or series capacitance Cs, where Lg and Cs are independent of frequency, 
to make the total reactance Xo{uj) = X{u;) + Xs{u)) equal to zero at w = WQ. Equations for the 
tuned antenna relating the impedance Zo{u) to resistance i?o(w), reactance XO{LL)), voltage V^(w) 
and current /o(w), and the definitions of voltage and current in terms of the incident ao(w) and 
emergent 6o(w) coefficients of the propagating mode in the feed line are given by 

^o = -Ro+j^o = V^o//o,    Vb = Oo + 6o,    Io = {ao-bo)/Zo (1) 

where Zc is the characteristic impedance of the feed line, which can be chosen independent of 
frequency. The tuned frequency WQ, at which Xo(wo) = 0, defines a resonant frequency of the 
antenna if XQ{U)O) > 0 and an antiresonant frequency of the antenna if Xo(wo) < 0. 

III. FORMULAS FOR THE BANDWIDTH OF ANTENNAS 
The bandwidth of an antenna tuned to zero reactance is usually defined in one of two ways. 
The first way defines what is commonly called the conductance bandwidth and the second way 
defines what is commonly called the matched VSWR bandwidth. The conductance bandwidth 
for an antenna tuned at a frequency WQ is defined as the difference between the two frequencies 
at which the power accepted by the antenna, excited by a constant value of voltage VQ, is a given 
fraction of the power accepted at the frequency WQ. With the help of (1), the conductance at a 
frequency w of an antenna tuned at the frequency WQ can be written 

Go(w) = Re[l/.^o(a;)] = Ro{w)/[E^{uj) + X^{ij)]. (2) 

We can immediately see from (2) that there is a problem with using conductance bandwidth, 
namely, that the derivative of Go(w) evaluated at UIQ equals Go(wo) = — jRo(wo)/i?o('^o) and thus 
it is not zero at wo tmless i?o(wo) = 0. This means that in general the conductance will not reach 
a maximum at the frequency WQ- Moreover, in antiresonant frequency ranges where both the 
resistance and reactance of the antenna are changing rapidly with frequency, the conductance 
may not possess a well-defined maximum and consequently the conductance bandwidth may not 
exist in these antiresonant frequency ranges. Fortimately, the matched VSWR bandwidth does 
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not suffer from these limitations. 

The matched VSWR bandwidth is the difference in frequencies on either side of WQ at which the 
VSWR equals a constant a or, equivalently, at which the magnitude squared of the reflection 
coefficient |ro(w)p equals a = {a - l)^/(cr + 1)^ (the constant a is assumed chosen < 1/2), 
provided the characteristic impedance Zc of the feed hne equals Zo(wo) = -Ro(wo). Then |ro(w)p 
can be expressed from (1) as 

^_Xg(a;) + [J?o(a;)-JloMp iroHl^ = 6o(w) 
(a;) 

Both |ro(w)p and its derivative with respect to w are zero at LJQ. Consequently, |ro(w)|^ has a 
minimum at LJQ for all values of the frequency WQ at which the antenna is tuned [A'o(wo) = 0] 
and matched to the feed line [Z^ = i?o(wo)]. This means that the matched VSWR bandwidth 
determined by |ro(w)p = a or from (3) 

Xo2(a;) + [i?oH-i?o(wo)]^=4;8iJo(wo)i?oM,        yS = a/(l - a) < 1 (4) 

unUke the conductance bandwidth, exists in general at all frequencies, that is, throughout both 
the antiresonant [X'Q{WO) < 0] and resonant [X^(wo) > 0] frequency ranges. Therefore, the 
matched VSWR bandwidth is a more fundamental, universally apphcable definition of band- 
width for a general antenna than conductance bandwidth. 

To find the two frequencies w = W0+Aw± satisfying (4), expand i?o(wo+Aw±) and Xo(a;o-l-Aw±) 
in a Taylor series about WQ and insert these expansions into (4) to get 

\Z'o{uo)f{Au>±f « ipRoM [i?o(wo) + R{>iujo)Auj±] (5) 

under the assumptions that /3|i?o(wo)-Ro(wo)|/|^o('^o)P < 1 and the O [{Auj±f] terms are neg- 
Ugible. These latter two assumptions are generally satisfied if |Aa;±/wo| < 1. The solution to 
this quadratic equation (5) for Au± is given by 

^^^°^ ^PR'o{uJo)/\Z^{cjo)\ ± ^p + \pIio{uJo)/Z'oiu;oW Aoj± (6) \Z'oM\ 
The ratio P\RQ{WO)/ZQ{IJJO)\ is less than or equal to unity and, in addition, for most tuned anten- 
nas, |iZo(wo)| ;S \XQ{(JO)\ throughout the resonant and antiresonant frequency ranges. Therefore, 
the square root in (6) can be approximated by \/P, so that the fractional matched VSWR band 
width FBWy{u]o) is given by 

Wo 

^, 4^Roiu;o) 
VP = 

a-l 
2v^ (7) 

which holds for tuned antennas under the condition that |Aw±/wo| <IC 1 or FBWY{UO) <C 1. 
For most tuned antennas, this condition can be relaxed to FBWy{u>Q) < y/^jl. For half-power 
VSWR bandwidth, a = 1/2 {a = 5.828) and \f^=\. As far as we know, (7) is a general result 
for antennas that has not been derived or published previously. 

IV. IMPEDANCE AND BANDWIDTH IN TERMS OF FIELDS AND Q 
The formula for matched VSWR bandwidth given in (7) requires the derivative of impedance 
with respect to frequency evaluated at w = wo, that is, ZQ{U}Q) = i?o(wo) +JXQ{CJO)- However, as 
we shall see, an exphcit expression for R^{oJo) in terms of fields is not needed in the derivation of 
Q and its relationship to the bandwidth of the tuned antenna. On the other hand, the evaluation 
of the fi:equency derivative of the reactance, Xo(cJo), in terms of the electromagnetic fields of the 
antenna is crucial to the derivation of Q and its relationship to bandwidth. 

A. Expression for the Frequency Derivative of Reactance 
A convenient expression for XQ{U;O) can be derived by combining Maxwell's equations with the 
frequency derivative of Maxwell's equations to get 

l/opX^K) = ^lim  [RC   f  (B • H* -I- D* ■ E) dV - 2eor f iFpdfil 

Vo{r) 4,r 

+ a;oRe J (B^„ • H* - B ■ H^^ + E • V^ - V* ■ E'J dV + J-Im j F^„ ■ F*dn.        (8) 

The usual electric and magnetic vectors are denoted by (E,D) and (B,H), respectively, with 



23 = D + J/(jw), the vector J being the current density. The far electric field F{6,(p) — 
linir_>oof'e-''°''E(r). The primes indicate derivatives with respect to w evaluated at the tuned 
frequency UIQ, and the subscript "JQ" indicates that the feed-line current IQ is held constant 
with frequency during the indicated differentiation. The volume Vo(r) is Vo capped by a sphere 
of radius r surrounding the antenna system. Each of the two integral terms inside the square 
brackets of (8) approaches an infinite value as r -^ oo, but together they approach a finite value 
because all the other terms in (80 are finite. As r —» oo, the second integral term inside the 
square brackets, the one with |F|^, subtracts the infinite energy in the radiation fields from the 
infinite total energy in the fields to leave a finite energy involving "static" and "induction" fields. 

From Poynting's theorem and the fact that Xo(wo) = 0, we also have that \Io\^Xo{u>o)/cJo = 
limr-,oo Re /^^(^) (B ■ H* - T>* • E) dV = 0. Therefore, (8) can be rewritten as 

with 

l/opX^K) = mM + WcM + WniuJo)] (9) 

W{oJo) = WmM + We(wo) = 2W„(wo) = 2We{cJo) (10) 

Vo{r) 47r 

Wciuo) = y Im J {fiiU'j^ ■ H* + eiE',„ .E*)dV+'jj (/x^lHp + e'M'') dV        (12) 

Wjtiivo) = ^Im j F'j^ ■ F*dO (13) 

47r 

in which we have assumed the constitutive relations B = (/x^ — j/^i)H and "D = {cr — jei)E. 
Note that magnetic and electric energies Wm(w) and We{u}) at any frequency w can be de- 
fined by (11) evaluated at any frequency w instead of WQ- Each of these energies is finite, 
and the reactance at any frequency w can thus be written in terms of these finite energies as 
Xo(w) = 4a;[Wm(w) — We(w)]/|/oP, which equals zero at w = WQ. 

Although Wmii^) and We(w) are not the energies in quasi-static fields and the antenna material 
may be highly dispersive, it still seems appropriate to refer to them as "stored" magnetic and 
electric energies because, as shown below, they define a Q that is inversely proportional to the 
bandwidth of a tuned antenna if Q ^ 1 (Q ^ 4). 

The energies in (9) denoted by Wc and Wn are associated with the power dissipated by the 
antenna in the form of power loss and power radiated, respectively. Unlike the power loss and 
radiated, however, their sum can be positive, negative, or zero and XQ{U!O) in (9) can be positive, 
negative, or zero. Therefore, the Foster reactance theorem, which says that XQ{U)) for a one-port 
lossless network is always positive, does not hold at all frequencies for antennas [8, sec. 8-4]. 

B. Definition and Exact Expressions of Q 
The quality factor Q{u>o) for an antenna tuned to have zero reactance at the frequency WQ 

[Xo{oJo) = 0] can be defined [l]-[7] analogously to the quality factor for resonant circuits in 
terms of the "stored" energy W'(wo) and the accepted power PA(WO), which equals the total 
power dissipated as power radiated by the antenna plus power loss in the antenna material: 

Qiujo) = WOW^(CJO)/-PA(WO). (14) 

Formulas for the "stored" energy VF(wo) in terms of fields are given by means of (lO)-(ll) and 
the power accepted by the antenna can be expressed as PA = |/o|^jRo/2. Thus (14) allows (9) to 
be rewritten in the form 

X^(wo) = 2i?o(a;o)Q(wo)/wo + 4[W£(a;o) + WK(wo)]/|/o|^ (15) 

so that Q{oJo) can be expressed as 

The expressions on the right-hand sides of (14) and (16) are very different in form, yet they 
are exact and thus produce the same value of Q(wo).   Especially note that the Q(wo) in (16) 



differs from the conventional formula for the quality factor Qc(wo) = UJOXQ{UO)/[2RO{U)O)] by 
the amount 2woi?o(wo)[W£(wo) + Wiz{u)o)]/\Io\^. This Qc is commonly used to determine the 
quality factor and the bandwidth (1/Qc for half-power conductance bandwidth and 2/Qc for 
half-powerVSWR bandwidth) of tuned antennas. 

C. Approximate Expression for Q and Its Relationship to Bandwidth 
We can estimate the dissipation energy, Wc{i^o) + WTC(WO), in (16) to get an approximate ex- 
pression for Q(wo) that can be immediately related to the bandwidth of the tuned antenna. 
As mentioned above, the sum Wc{u)o) + W'-R,(WO) is energy associated with the power loss 
and power radiated by the tuned antenna. Away from antiresonant frequency ranges of most 
tuned antennas, X^(wo) > 0 and |ilo(wo)| < X^(wo), and if the Q is large, the power loss 
and power radiated can both be approximated by ohmic loss in a resistor of a series RLC 
circuit. Evaluating Wc{iOo) + WTC(WO) for such a series RLC circuit reveals that it's value is 
small enough to make the second term on the right-hand side of (16) negligible compared to 
the first. Therefore, away from antiresonant frequency ranges and for large Q (say Q >4), 
Qiuo) « woX^(wo)/[2iio(wo)] « wo|^^(wo)|/[2iio(wo)]- 

At an antiresonant frequency UIQ, most tuned antennas with a large Q can be approximated by a 
parallel RLC circuit. An evaluation of WC{OJO) + W-R,(WO) for such a tuned parallel RLC circuit 
reveals that X^(wo) - ^[WcM + WnM]/\Io\^ ^ l^oK)|- Therefore, 

for all WQ. These approximate values for Q(wo) in (17) are positive for all WQ and, in addition, 
(17) holds in general only for large Q {Q > 4). Therefore, (17) does not apply if the Q is too small 
and especially if the antenna is so dominated by negative iJ.r and e^ materials that its Q{LUO) is 
negative. Such unusual antennas would be highly dispersive and could not be well approximated 
by conventional series or parallel RLC circuits. Ordinarily, fir and e^ are positive and it can be 
proven that the Q of an antenna increases extremely rapidly as the maximum dimension of the 
source region of the antenna is decreased while maintaining its frequency, efficiency, and far-field 
pattern (thus confirming that supergain above a few dB is impractical). 

Comparing the approximate formula for the quality factor Q{uJo) in (17) with the approximate 
formula for the matched VSWR fractional bandwidth FEWyjuo) in (7), one finds 

provided Q(wo) ~4. An approximate expression for Q similar to (18) was derived by Geyi et al. 
[5, eq. (65)], but with \Zly{uo)\ replaced by |X^(wo)| (and P = 1). Such an expression would not 
produce an accurate approximation to Q and bandwidth in antiresonant frequency ranges. 

V. NUMERICAL RESULTS 
Exact VSWR bandwidths are computed from the magnitude of the reflection coefficient versus 
frequency curves obtained from the numerical solutions to tuned, thin straight-wire and wire-loop 
antennas ranging in length from a small fraction of a wavelength to many wavelengths. The exact 
values of Q for these antennas are computed from the general expression (16) derived for the Q of 
tuned antennas. The exact values of VSWR bandwidth and Q are compared to the approximate 
values obtained from the derived approximate formula (18) for VSWR bandwidth and Q. These 
numerical comparisons confirm that the approximate formula (18) for VSWR bandwidth and Q 
of a tuned antenna gives much more accurate values in antiresonant frequency ranges than the 
conventional quality factor Qc [given below (16)]. 
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